Direction of Arrival Estimation Signal of Opportunity Receiver

sensors
Direction of Arrival Estimation Signal of Opportunity Receiver (GSC-TOPS-248)
A multichannel VHF receiver for CubeSat platforms used to maximize antenna gain in a desired direction and minimize antenna gain in other directions
Overview
Microwave remote sensing of Earth science parameters (such as soil moisture, ice thickness, ocean wind speed etc.) is currently performed using active microwave radars or passive microwave radiometers. For true global measurement, these radar and radiometers needs to be deployed in low earth orbit (LEO) or geostationary orbit (GEO). However, for achieving reasonable spatial resolution and temporal resolution, these remote sensing instruments become complex and expensive to deploy in LEO/GEO. In order to reduce mission cost and deployment time, there is a need for alternative techniques which are based on using already existing EM signals transmitted by communication transmitters. Currently, the transceiver used for small satellite applications use antennas that are omnidirectional. These receivers will indiscriminately receive signals incident from all directions and will not have capability to suppress RF signals incident from unwanted directions. The Direction of Arrival Estimation Signal of Opportunity Receiver maximizes antenna gain in a desired direction to maximize desired signal and suppress unwanted signals.

The Technology
The Direction of Arrival Estimation Signal of Opportunity Receiver is a transceiver technology for small satellite and CubeSat platforms that enables maximization of antenna gain in a specific direction to receive desired signals and suppress signals from other directions. The receive is a four-channel transceiver system to be operating in a LEO orbit for receiving direct as well as reflected signal (signals reflected from the ground) of a communication satellite. An adaptive array processing is implemented to steer the receiver beam towards the GEO satellites as well as steer the antenna beam towards the ground. When the beam is steered towards the ground the receiver provides attenuation for the direct signal incident from the GEO satellite, thus isolating the reflected signal from the strong direct signal. Usually a simple pair of cross dipoles are used for receiving signals transmitted by communication satellites. One pair is used to receive direct signals and another pair is used receive reflected signals. These dipoles are ideally supposed to receive only the reflected signals from the ground. However, because of close proximity and strong coupling to each other through their mutual coupling and because of their broad beam patterns, these dipole antennas receive signals reflected from other targets, as well as the direct transmitted signal. Since the strength of direct signals will be above the strength of reflected signals, reflected signals typically are completely masked by the strong direct signals. The Direction of Arrival Estimation Signal of Opportunity Receiver maximizes antenna gain in a desired direction to maximize desired signal and suppress unwanted signals.
Hurricane Dorian Seen From Aboard the Space Station. Former Goddard electrical engineer and current NASA astronaut Christina Koch snapped this image of Hurricane Dorian from the International Space Station during a flyover on Monday, September 2, 2019. The station orbits more than 200 miles above the Earth.
Benefits
  • Low energy requirement
  • Compact in size and low weight

Applications
  • Global remote sensing
  • CubeSat/SmallSat communication
Technology Details

sensors
GSC-TOPS-248
GSC-18190-1
Similar Results
Front Image
Tunable Multi-Tone, Multi-Band, High-Frequency Synthesizer
Glenn's revolutionary new multi-tone, high-frequency synthesizer can enable a major upgrade in the design of high data rate, wide-band satellite communications links, in addition to the study of atmospheric effects. Conventional single-frequency beacon transmitters have a major limitation: they must assume that atmospheric attenuation and group delay effects are constant at all frequencies across the band of interest. Glenn's synthesizer overcomes this limitation by enabling measurements to be made at multiple frequencies across the entire multi-GHz wide frequency, providing much more accurate and actionable readings. This novel synthesizer consists of a solid-state frequency comb or harmonic generator that uses step-recovery semiconductor diodes to generate a broad range of evenly spaced harmonic frequencies, which are coherent and tunable over a wide frequency range. These harmonics are then filtered by a tunable bandpass filter and amplified to the necessary power level by a tunable millimeter-wave power amplifier. Next, the amplified signals are transmitted as beacon signals from a satellite to a ground receiving station. By measuring the relative signal strength and phase at ground sites the atmospheric induced effects can be determined, enabling scientists to gather essential climate data on hurricanes and climate change. In addition, the synthesizer can serve as a wideband source in place of a satellite transponder, making it easier to downlink high volumes of collected data to the scientific community. Glenn's synthesizer enables a beacon transmitter that, from the economical CubeSat platform, offers simultaneous, fast, and more accurate wideband transmission from space through the Earth's atmosphere than has ever been possible before.
Lightweight, Self-Deployable Helical Antenna
NASA's newly developed antenna is lightweight (at or below 2 grams), low volume (at or below 1.2 cm3), and low stowage thickness (approx. 0.7 mm), all while delivering high performance (at or above 10 dBi gain). The antenna includes a novel design-material combination in a helical coil conformation. The design allows the antenna to compress for stowage (e.g., satellite launch), then self-deploy at the desired time in orbit. NASA's lightweight, self-deployable helical antenna can be integrated into a thin-film solar array (or other large deployable structures). Integrating antenna elements into deployable structures such as power generation arrays allows spacecraft designers to maximize the inherently limited resources (e.g., mass, volume, surface area) available in a small spacecraft. When used as a standalone (i.e., single antenna) setup, the the invention offers moderate advantages in terms of stowage thickness, volume, and mass. However, in applications that require antenna arrays, these advantages become multiplicative, resulting in the system offering the same or higher data rate performance while possessing a significantly reduced form factor. Prototypes of NASA's self-deployable, helical antenna have been fabricated in S-band, X-band, and Ka-band, all of which exhibited high performance. The antenna may find application in SmallSat communications (in deep space and LEO), as well as cases where low mass and stowage volume are valued and high antenna gain is required.
Spain
Using the Power Grid for Geophysical Imaging
This technology utilizes the U.S. high-voltage power transmission grid system as an extremely large antenna to extract unprecedented spatiotemporal space physical and geological information from distributed GIC observations. GICs are measured using differential a magnetometer technique involving one fluxgate magnetometer under the transmission line and another reference magnetometer station nearby. The reference station allows subtraction of the natural field from the line measurement, leaving only the GIC-related Biot-Savart field. This allows inversion of the GIC amplitude. The magnetometer stations are designed to operate autonomously. They are low-cost, enabling large scale application with a large number of measurement locations.
The Navigator GPS Receiver
The Navigator GPS Receiver
To enable it to acquire GPS signals very quickly and also track weak signals, the radiation-hardened Navigator receiver utilizes a bank of hardware correlators, a ColdFire microprocessor, and a specialized fast acquisition module (see figure 1). The hardware is implemented in VHSIC Hardware Description Language (VHDL) to target radiation-hardened Field Programmable Gate Arrays (FPGA) rather than Application-Specific Integrated Circuits (ASIC), in order to maintain flexibility for growth and design modifications. The Navigator was designed to operate autonomously to enable the use of GPS for onboard navigation in high altitude space missions. With the exception of GPS signals, Navigator requires no external data (e.g., current time estimate, recent GPS almanac, or converged navigation filter estimate of the receiver dynamics). By double buffering data up front in 1ms blocks, data can be processed as it is acquired. A discrete Fourier transform (DFT) is used to calculate the 1ms correlations, significantly reducing computing time. Computational efficiency is optimized and tradeoffs among sampling rate, data format, and data-path bit rate are carefully weighed in order to increase performance of the algorithm. In addition, the Navigators hardware-independent receiver software includes both a hardware interface to perform low-level functions as well as basic navigation. Onboard orbit determination and accurate state estimation/propagation during periods with no GPS access are accomplished by integration with the GPS Enhanced Onboard Navigation System (GEONS). Exploiting the properties of Fourier transform in a massively parallel search for the GSP signal, the Navigator has been tested and proven capable of acquiring signals at 25dB-Hz and below.
Figure 1.  Antenna Design.
Multi-and Wide-Band Single-Feed Patch Antenna
NASA's patch antenna technology exhibits higher operational bandwidth (on the order of 20%) than typical patch antennas (less than 10%) and can operate across integer-multiple frequency bands (e.g. S/X, C/X, S/C). Testing of the antenna design has demonstrated &#62 6dB of gain on both S and X bands (boresight), with an axial ratio of &#60 6dB and voltage standing wave ratio (VSWR) &#60 3:1 throughout the entire near-Earth network (NEN) operating bands (22.4GHz and 88.4GHz) with hemispherical coverage. The patch size is on the order of 10 x 10 cm and with associated electronics, is about 1 cm in height.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo