SpaceCube Mini Solid State Data Recorder (SSDR)

Information Technology and Software
SpaceCube Mini Solid State Data Recorder (SSDR) (GSC-TOPS-359)
Enabling big data storage & processing on small satellites
Overview
Upcoming SmallSat missions at NASA and in the commercial space sector require highly performant, miniaturized, and radiation tolerant components. One need is for data recorders capable of storing large quantities of data generated by advanced sensors for extended durations. Commercially available SmallSat form factor data recorders generally either have poor reliability in high radiation environments or do not provide the high-speed read/write data rates necessary for high-performance detectors and sensors. This limits data collection ability, which also limits the ability to perform on-board processing. To meet data recording needs for SmallSat missions in harsh radiation orbits and environments (e.g., GEO, polar, lunar, etc.) innovators at NASA’s Goddard Space Flight Center have developed a radiation tolerant single-board solid-state data recorder (SSDR) card. This miniaturized (3.5” x 3.5”) card is configured for use in a 1U CubeSat payload form factor multi-purpose architecture, enabling high density data storage and on-board processing for a variety of data-intensive SmallSat missions.

The Technology
NASA's SpaceCube Mini SSDR is a 3.5”x3.5” card designed for use in CubeSats and SmallSats. The SSDR uses a radiation-tolerant field programmable gate array (FPGA) that interfaces with two independently controlled and powered banks of NAND Flash storage, providing up to 12 Terabits of storage capacity. The card includes multiple SpaceWire nodes and multi-gigabit transceivers for commanding and data transfer, various error prevention and correction mechanisms including Reed-Solomon encoding/decoding and data randomization schemes, and depacketizers/packetizers for handling data in CCSDS format. This NASA technology is innovative in its combination of high reliability for harsh radiation environments (e.g., geostationary orbit, lunar orbit and surface, etc.) with high-speed data transfer capabilities (400+ MB/s write, 600+ MB/s read) in a compact form factor. The design allows for selective population of NAND Flash modules and independent control of memory banks, enabling power optimization through features like single-bank operation. The card integrates with a modular architecture system in which multiple CubeSat-sized cards (e.g., processors, GPS, etc.) can be mixed and matched to meet specific mission requirements. The SSDR card includes radiation-hardened voltage regulators to ensure safe operation in space environments. The SSDR is ideal for small form factor satellites with some combination of the following requirements: (a) ability to store large amounts of data generated by high-performance detectors and sensors for extended durations (e.g., in environments without nearby relay capabilities), (b) ability to read and write data with high throughput, and (c) ability to operate in harsh radiation environments. It is fully compatible with NASA’s CubeSat Card Specification (CS2) and NASA’s SpaceCube v3.0 mini processing card, which is also available for licensing.
Image Credit: NASA A block diagram of NASA's SpaceCube Mini SSDR card layout (from U.S. Patent No. 12,118,234).
Benefits
  • Form factor: At 3.5”x 3.5”, NASA’s SpaceCube Mini SSDR fits into a 1U CubeSat form factor avionics architecture, enabling a class of missions that other high-reliability data recorders are not suited for.
  • High density data storage: NASA’s SSDR can store 12 terabits of data, making it ideal for space-constrained satellite missions.
  • High speed data (memory) rates: With write speeds of 400+ MB/s and read speeds of 600+ MB/s and multiple interface options (SpaceWire, multi-gigabit transceivers), NASA’s SSDR achieves the high-throughput data rates required for use with advanced sensors and detectors.
  • Radiation tolerance: Use of radiation-tolerant and radiation-hardened qualified flight parts, as well as built-in error detection and correction capabilities, enables use in harsh radiation environments (e.g., beyond LEO).
  • Modular & scalable architecture: A modular architecture allows multiple SSDR units to be configured together to expand satellite data storage capacity.
  • Flexible power management: Independent control of NAND Flash memory banks and ability to selectively populate memory banks for power optimization allows the SSDR to operate at just 5-7W, with lower power “inactive” modes possible.

Applications
  • SmallSat & CubeSat mission data recording: The SSDR’s capability to handle high-speed data rates makes it ideal for collecting data from advanced sensors and detectors including high-resolution imaging sensors, spectrometers, and radiation detectors, especially in environments where data integrity must be maintained despite radiation exposure.
  • Earth observation: Satellites equipped with SSDR can collect and store large volumes of data for both government and commercial Earth observation operations.
  • Communication satellites: For communication satellites, particularly those in GEO or lunar orbit, the SSDR could act as a buffer for data that needs to be stored and transmitted when communication windows are available, enhancing the efficiency of data relay systems.
  • Aerospace and defense applications: NASA’s SSDR could also be employed in UAVs, sounding rockets, and robotic systems.
  • On-board processing: This NASA invention provides the processing capabilities necessary for on-board computing in a wide range of satellite and other systems.
Technology Details

Information Technology and Software
GSC-TOPS-359
GSC-18856-1
12118234
Similar Results
Lightweight, Self-Deployable Helical Antenna
NASA's newly developed antenna is lightweight (at or below 2 grams), low volume (at or below 1.2 cm3), and low stowage thickness (approx. 0.7 mm), all while delivering high performance (at or above 10 dBi gain). The antenna includes a novel design-material combination in a helical coil conformation. The design allows the antenna to compress for stowage (e.g., satellite launch), then self-deploy at the desired time in orbit. NASA's lightweight, self-deployable helical antenna can be integrated into a thin-film solar array (or other large deployable structures). Integrating antenna elements into deployable structures such as power generation arrays allows spacecraft designers to maximize the inherently limited resources (e.g., mass, volume, surface area) available in a small spacecraft. When used as a standalone (i.e., single antenna) setup, the the invention offers moderate advantages in terms of stowage thickness, volume, and mass. However, in applications that require antenna arrays, these advantages become multiplicative, resulting in the system offering the same or higher data rate performance while possessing a significantly reduced form factor. Prototypes of NASA's self-deployable, helical antenna have been fabricated in S-band, X-band, and Ka-band, all of which exhibited high performance. The antenna may find application in SmallSat communications (in deep space and LEO), as well as cases where low mass and stowage volume are valued and high antenna gain is required.
https://www.flickr.com/photos/gsfc/4691464850/
SmallSat Standardized Architecture
SmallSat Standardized Architecture is architecture that is modularized, pressurizable, thermally controlled spacecraft-designed to host ruggedized commercial off-the-shelf (COTS) instrumentation in a terrestrial-like environment on orbit. The architecture takes advantage of a pressurizable volume for both spacecraft and payload systems. The pressurizable volume provides multiple benefits, primarily in thermal design. By maintaining one atmosphere of pressure inside the SmallSat, materials that might otherwise outgas and/or fail and/or cause significant contamination issues, are no longer a concern. This also means that certain vibration-absorbing materials/designs used in COTS hardware can be used on orbit. Additionally, printed circuit boards do not have to be redesigned for thermal requirements, plus conformal coating and contamination bake-outs are no longer required. The SmallSat architecture is designed to take advantage of the United States Air Force (USAF) Rideshare Program and the Evolved Expendable Launch Vehicle Secondary Payload Adaptor (ESPA) ring. The ESPA ring comes in two sizes: standard and Grande. The architecture has two main configurations, one designed for the ESPA Grande, and the other for the standard ESPA ring. The ESPA Grande version is a hockey-puck-shaped spacecraft bus measuring approximately 40 inches in diameter and 20 inches in height. This version takes full advantage of the ESPA Grandes 300-kilogram capability per attachment point.
This star-studded image from NASA's Hubble Space Telescope shows us a portion of Messier 11, an open star cluster in the southern constellation of Scutum (the Shield). Messier 11 is also known as the Wild Duck Cluster, as its brightest stars form a V shape that somewhat resembles a flock of ducks in flight. Messier 11 is one of the richest and most compact open clusters currently known. By investigating the brightest, hottest main sequence stars in the cluster, astronomers estimate that it formed roughly 220 million years ago. Open clusters tend to contain fewer and younger stars than their more compact globular cousins, and Messier 11 is no exception: at its center lie many blue stars, the hottest and youngest of the clusters few thousand stellar residents. The lifespans of open clusters are also relatively short compared to those of globular ones; stars in open clusters are spread farther apart and are thus not as strongly bound to each other by gravity, causing them to be more easily and quickly drawn away by stronger gravitational forces. As a result, Messier 11 is likely to disperse in a few million years as its members are ejected one by one, pulled away by other celestial objects in the vicinity.
Miniaturized Astrometric Alignment Sensor
The Miniaturized Astrometric Alignment Sensor advances satellite capabilities for astrophysical measurements, necessary for formation flying, relative navigation, and virtual telescope capabilities. The sensor is a single assembly consisting of a small, low powered camera assembly. The sensor detects stellar objects from which both stellar and object tracking are performed. The sensors components consist of a low power camera assembly, interchangeable lenses, camera power supply, and image processing software and algorithms. The system functions by searching and identifying objects in the camera's field of view and tracking the objects against a selected star pattern with a central body of interest in the sensor's field of view. The Miniaturized Astrometric Alignment Sensor makes it possible to measure a spacecrafts altitude and orientation with respect to known stellar objects. The instrument takes an image of a patch of sky, identifies the stars in that field of view, and compares the field view with a stored star map. The data is processed with a dedicated processor attached to the instrument to spell out the attitude and orientation of a spacecraft.
Rendition of NASA's FASTSAT in orbit.
High-Speed, Low-Cost Telemetry Access from Space
NASA's SDR uses Field-Programmable Gate Array (FPGA) technology to enable flexible performance on orbit. A first-generation FM-modulated transceiver is capable of operating at up to 1 Mbps downlink and 50 kbps uplink, full duplex. An FPGA performs Reed-Solomon (255,223) encoding, decoding, and bit synchronization, providing Consultative Committee for Space Data Systems (CCSDS) and Near Earth Network (NEN) telemetry protocol compatibility. The transceiver accepts data from the onboard flight computer via a source synchronous RS422 interface. NASA's second-generation full duplex SDR, known as PULSAR (programmable ultra-lightweight system-adaptable radio, Figures 1 and 2 below) incorporates command receiver and telemetry transmitters, as well as updated processing and power capabilities. An S-band command receiver offers a max uplink data rate of 300 Kbps and built-in QPSK demodulation. X- and S-Band telemetry transmitters offer a max downlink data rate of 150 Mbps and flexible forward-error correction (FEC) using Reed-Solomon encoding (LDPC rate 7/8 and 1/2 convolution in development), and it uses QPSK modulation. The use of FEC adds an order of magnitude increase in telemetry throughput due to an improved coding gain. An onboard FPGA uses high-speed logic for uplink/downlink and encoding/decoding processes. Balloon flight testing has been conducted and is ongoing for PULSAR.
Firework Nova
Diminutive Assembly for Nanosatellite deploYables (DANY)
SmallSat designers seek to employ restraints and release mechanisms of minimal size and weight, often placing each on the outside of the SmallSat structure. Surprisingly, "fishing line" (released via burn through) is often used to secure and release deployables. Vibrations and forces generated during launch can stretch the fishing line, thus allowing these precious deployables to become damaged or otherwise not release properly later on. While these small sats are less expensive than their larger counterparts, satellite owners must minimize the chance that deployables are damaged or that deployment is unsuccessful. Five years ago, engineers at NASA GSFC faced these SmallSat deployment challenges and knew a better way must exist to prevent equipment damage and ensure successful release. Investigating a host of designs to minimize size, weight, and cost while maximizing communication and mechanical reliability, NASA's engineers created DANY (the Diminutive Assembly for Nanosatellite deploYables). NASA's DANY technology uses spring-loaded metal pins, a reliable burn-through mechanism, efficient bracketing, and a circuit board - all within a 3.0" x 1.3" x 0.2" volume (smaller than a stack of 10 business cards) - to reliably stow and release deployables on command. Using DANY, stowed deployables are securely fastened using the spring-loaded locking pins. Upon receiving a deployment signal, a plastic restraining link is burned through which allows the spring-loaded pins to release the deployable and simultaneously trigger a switch to signal a successful deployment event.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo