Apparatus and Method for Biofeedback Training

health medicine and biotechnology
Apparatus and Method for Biofeedback Training (LAR-TOPS-289)
Virtual reality / Augmented reality / Mixed reality implementation of method and apparatus for performance optimization through perturbation of task virtual elements
Overview
The technology combines virtual reality (VR) with a real environment. The VR provides sensory feedback. If performance is not optimal, the environment is disruptive. If optimal, the environment is stable / normal. The system is to provide feedback to train for self-regulation (e.g. relax on command) when performing tasks. Brainwave activity modulates augmented reality (AR), then once the action is taken, then VR takes over. Mental training is made objective by physiological measures.

The Technology
Measured values of physiological signals may be associated with physiological states and may be used to define the presence of such states. For example, in a physiological state of anxiety, adrenaline diverts blood from the body surface to the core of the body in response to a perceived danger. As warm blood is withdrawn from the surface of the skin, the skin temperature drops. Similarly, in a physiological state of stress, perspiration generally increases making the skin more conductive to the passage of an electrical current, thereby increasing the galvanic skin response. It is well known in the field of performance psychology that the peak performance of a task, such as, for example, putting in golf, foul shooting in basketball, serving in tennis, marksmanship in archery or on a gunnery range, shooting pool, or throwing darts, requires the presence of a physiological state, comprising one or more optimal measured values of physiological signals, coincident with the physical performance of the task. The presence of such an optimal physiological state in athletics is colloquially referred to as being in the zone. The technology provides: an apparatus and method of performance-enhancing biofeedback training that has intuitive and motivational appeal to the trainee, by tightly embedding the biofeedback training in the actual task whose performance is to be improved; and, an apparatus and method of performance-enhancing biofeedback training that is operational in real-time, precisely at the moment when a task or exercise, such as an athletic or military maneuver, is required to be performed. The feedback behavior of the physical environment provided by the present invention has the added benefit of providing aids to visualization that the trainee can use in the real-world skill performance setting.
Player preparing to practice putt wearing the VRZONE headset. In VRZONE, the player sees a virtual reality rendering of this view of the physical ZONE system. Image Credit: NASA
Benefits
  • Employs advanced technology (Virtual Reality / Augmented Reality / Mixed Reality) in training regimen
  • Incorporates physiological monitoring for objective measurement / comparison

Applications
  • Simulations and video games
  • Police / military training
Technology Details

health medicine and biotechnology
LAR-TOPS-289
LAR-19302-1
Similar Results
Purchased from Shutterstock on 4/1/24.Full use license
Biocybernetic VR/AR Training System for De-Escalating Conflict
NASA’s biocybernetic system is a cutting-edge technology designed to cultivate emotional regulation skills. It leverages the concept of biocybernetic adaptation, where the trainee engages with virtual entities, such as characters in VR/AR/MR environments, whose behavior dynamically responds to the trainee's physiological signals. This responsive system provides real-time feedback, incentivizing the trainee to attain a calmer physiological state. The key components of this VR innovation include: · Head-mounted display hardware · Physiological monitoring hardware, tracking heart rate, breathing, sweat, breath, and brain waves · Software, powered by the Biocybernetic Loop (BL) Engine, integrating physiological data into the VR simulation · Character response avatars · Integration of the trainee's biofeedback data with the VR environment This technology relies on two functional elements working in unison to adapt the behavior and appearance of VR/AR/MR characters. Inference of the trainee's emotional state from physiological signals requires the implementation of advanced machine learning and modeling techniques. A pattern comparator stores templates of physiological patterns and continually assesses the proximity of the trainee's real-time physiological activity to the desired patterns. The pattern comparator calculates a closeness score in relation to one or more reference patterns, transmitting this data to the VR/AR/MR environment components. Consequently, the level of threat or cooperation presented by virtual characters is dynamically adjusted in response to the closeness score, creating an immersive and adaptive training experience.
Two young women playing video games
Game and Simulation Control
The technology is constructed to allow modulation of player inputs to a video game or simulation from a user interface device based on the players psychophysiological state. The invention exploits current wireless motion-sensing technologies to utilize physiological signals for input modulation. These include, but are not limited to, heart rate, muscle tension, and brain wave activity. The current capability has been successfully prototyped using the Nintendo Wii console and wireless Wii remote. The experience of electronic game play may also be enhanced by introducing a multiplayer component in which various players collaboratively pursue the goals of the game. The device can also enhance multiplayer experiences such as a video game tournament, in which the skill set required in competitive game play is increased by allowing players to interact with the game, and compete with one another, on a psychophysiological level. This system is compatible with the Nintendo Wii, and prototypes have been designed and are being developed to extend this capability to the PlayStation Move, Xbox Kinect, and other similar game platforms.
Golfer lining up a put
ZONE (Zeroing Out Negative Effects)
The system uses perturbation feedback to help the athlete get into the zone through an original method of ZONE. The method allows a trainee to learn physiological self-regulation in order to modify the difficulty of the performance task and/or environment in which training is conducted. For example, better concentration leads to a variety of easier conditions on a training putting green. The technology incorporates software and hardware to provide real-time feedback to the athlete about how close his or her arousal and emotive responses are to an optimal state required to successfully perform the athletic task. This innovation presents the capability to extend current sports training and psychological practices of guided imagery visualization and cognitive reinforcement learning by systematically providing demonstrable and relevant feedback through the use of closed-loop, cybernetic feedback principles that provide immediate reinforcement of pyschophysiological self-regulation and translate into better skill-based performance.
Pervasive Biocybernetic Adaptation
The system seamlessly integrates into real-life environments, including homes, cars, or cockpits for pilots. This enables users to train within their daily routines as they move through various work and leisure settings. The technology provides continuous physiological feedback, motivating users to regulate their cognitive and emotional states, with rewards being reflected in the environment. For instance, a driver or pilot can monitor alertness and see changes in their dashboard once a desired state is reached. The system comprises three key components: Talisman: Biofeedback sensors worn on the user's body. Artifacts: Receivers placed in the environment to receive biofeedback signals from the talisman. Software elements that facilitate changes in the operation and appearance of the environment. A pattern comparator stores physiological pattern templates and calculates the proximity of the user's current physiological activity to desirable or undesirable patterns. The reward calculator uses this data to determine when and what rewards are introduced or removed from the user's experience, both qualitatively and quantitatively. As of now, the system has a Technology Readiness Level (TRL) of 3, indicating it is a concept with proof-of-concept analysis.
Purchased from Shutterstock, shutterstock_1478828816.pn
Computer-Brain Interface for Display Control
The basis of the NASA innovation is the brain signal created by flashing light, referred to as a Visually-Evoked Cortical Potential (VECP). The VECP brain signal can be detected by electroencephalogram (EEG) measurements recorded by electrode sensors placed over the brain’s occipital lobe. In the case of the NASA innovation, the flashing light is embedded as an independent function in an electronic display, e.g. backlit LCD or OLED display. The frequency of the flashing light can be controlled separate from the display refresh rate frequency so as to provide a large number of different frequencies for identifying specific display pixels or pixel regions. Also, the independently controlled flashing allows flashing rates to be chosen such that the display user sees no noticeable flickering. Further, because the VECP signal is correlated with the frequency of the signal in specific regions of the display, the approach determines the absolute location of eye fixation, eliminating the need to calibrate the gaze tracker to the display. Another key advantage of this novel method of brain-display eye gaze tracking is that it is only sensitive to where the user is focused and attentive to the information being displayed. Conventional optical eye tracking devices detect where the user is looking, regardless of whether they are paying attention to what they are seeing. An early-stage prototype has proven the viability of this innovation. NASA seeks partners to continue development and commercialization.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo