Shape Adaptive Multilayered Polymer Composite
materials and coatings
Shape Adaptive Multilayered Polymer Composite (LAR-TOPS-39)
Variable stiffness shape memory polymer triggered by both Joule heating and dielectric loss
Overview
NASA's Langley Research Center has developed a novel shape memory polymer (SMP) made from composite materials for use in morphing structures. In response to an external stimulus such as a temperature change or an electric field, the thermosetting material changes shape, but then returns to its original form once conditions return to normal. Through a precise combination of monomers, conductive fillers, and elastic layers, the NASA polymer matrix can be triggered by two effects--Joule heating and dielectric loss--to increase the response. The new material remedies the limitations of other SMPs currently on the market--namely the slow stimulant response times, the strength inconsistencies, and the use of toxic epoxies that may complicate manufacturing. NASA has developed prototypes and now seeks a partner to license the technology for commercial applications.
The Technology
The NASA Langley SMP was originally designed for smart active structures in morphing spacecraft and airfoils to provide noise reduction and increased stability. The technology may also have applications in self-deployable structures, smart armors, intelligent medical devices, and other various morphing structures. The incorporation of conductive fillers into the polymer matrix allows for a faster response time than that of typical SMPs due to a combined response from both Joule heating and dielectric loss. Joule heating is achieved by the application of a low-level current that is diffused uniformly across the polymer when an electric field is applied. The addition of an alternating field shortens the thermal response time due to dielectric loss. Voltage application is determined by the specific material dimensions. For a benchtop scale device, about 10-40V was required for activation of the material. Furthermore, the technologys variable stiffness polymer composite (VSPc) is laminated with highly elastic layers to provide additional stored elastic energy, resulting in a higher recovery force than that of similar materials currently on the market. The technology is being used in a laboratory setting at NASA and prototypes have been built, with durability and fatigue testing underway. The new polymer is patent pending, and NASA seeks companies to license the technology and develop it for commercial applications.
Benefits
- Quickened response time (~1.5-2 times faster than Joule heating alone)
- Recovery force of approximately 220 MPa (~75-100 times greater than current commercial SMPs)
- Less toxic system than epoxy-based polymer matrices, allowing for conventional open extrusion manufacturing
- Increased reliability due to dual heating
Applications
- Health - intelligent medical devices
- Military - smart armor and self-deployable structures
- Energy - turbine blade stabilization
- Aerospace - aircraft wing stabilization and noise reduction
Similar Results
Novel Shape Memory Composite Substrate
The new SMC substrate has four components: a shape memory polymer separately developed at NASA Langley; a stack of thin-ply carbon fiber sheets; a custom heater and heat spreader between the SMC layers; and integrated sensors (temperature and strain). The shape memory polymer allows the as-fabricated substrate to be programmed into a temporary shape through applied force and internal heating. In the programmed shape, the deformed structure is in a frozen state remaining dormant without external constraints. Upon heating once more, the substrate will return slowly (several to tens of seconds) to the original shape (shown below).
The thin carbon fiber laminate and in situ heating solve three major pitfalls of shape memory polymers: low actuation forces, low stiffness and strength limiting use as structural components, and relatively poor heat transfer. The key benefit of the technology is enabling efficient actuation and control of the structure while being a structural component in the load path. Once the SMC substrate is heated and releases its frozen strain energy to return to its original shape, it cools down and rigidizes into a standard polymer composite part. Entire structures can be fabricated from the SMC or it can be a component in the system used for moving between stowed and deployed states (example on the right). These capabilities enable many uses for the technology in-space and terrestrially.
Innovative Shape Memory Metal Matrix Composites
Shape memory alloys (SMAs) are metals that can return to their original shape following thermal input. They are commonly used as functional materials in sensors, actuators, clamping fixtures and release mechanisms across industries. SMAs can suffer from dimensional/thermal instability, creep, and/or low hardness, resulting in alloys with little to no work output in the long term. To combat these deficiencies, NASA has developed a process of incorporating nanoparticles of refractory materials (i.e., carbide, oxide, and nitride materials with high temperature resistance) into the alloys.
Using various processing methods, the nanoparticles can be effectively mixed and dispersed into the metal alloys as shown in the figure below. In these processes the SMA and refractory material powder is mixed and the refractory nanoparticles incorporated through extrusions, melting, or directly used in additive manufacturing to create parts for applications across the aerospace, automotive, marine, or biomedical sectors. The nanoparticle dispersion is a controllable method to strengthen the SMAs, increasing the hardness of the alloys, reducing the impact of creep, and improving the overall dimensional and thermal stability of the alloys.
The related patent is now available to license. Please note that NASA does not manufacture products itself for commercial sale.
How to Train Shape Memory Alloys
Glenn researchers have optimized how shape memory alloys (SMAs) are trained by reconceptualizing the entire stabilization process. Whereas prior techniques stabilize SMAs during thermal cycling, under conditions of fixed stress (known as the isobaric response), what Glenn's innovators have done instead is to use mechanical cycling under conditions of fixed temperature (the isothermal response) to achieve stabilization rapidly and efficiently. This novel method uses the isobaric response to establish the stabilization point under conditions identical to those that will be used during service. Once the stabilization point is known, a set of isothermal mechanical cycling experiments is then performed using different levels of applied stress. Each of these mechanical cycling experiments is left to run until the strain response has stabilized. When the stress levels required to achieve stabilization under isothermal conditions are known, they can be used to train the material in a fraction of the time that would be required to train the material using only thermal cycling. As the strain state has been achieved isothermally, the material can be switched back under isobaric conditions, and will remain stabilized during service. In short, Glenn's method of training can be completed in a matter of minutes rather than in days or even weeks, and so SMAs become much more practical to use in a wide range of applications.
Shape Memory Alloy Art (SMArt)
A prototype device has been developed at Glenn for creating shapes from SMA wire. The apparatus uses material feedstock in spools made of alloys that exhibit the shape memory effect (temperature-induced activation), super elasticity (stress-induced activation), and to some extent, magnetism (magnetically-induced activation). The feedstock (e.g., wire spool) is routed and positioned around a series of modular pins to create a shape outline. Once the desired shape is formed, the wire ends are clipped from the feedstock and secured into a locking mechanism, then connected to a heating circuit (e.g., joule heating, hot plate, heat gun). The programmable prescribed circuit parameters, including current or temperature and training time, are set and confirmed using the apparatus control dials and indicators to ensure safe and accurate operation of the device. Before enabling the circuit, a plastic shield is placed over the modular array to protect the operator. The final product will be a desired shape that can be deformed and recovered numerous times through heat activation.
Highly Thermal Conductive Polymeric Composites
There has been much interest in developing polymeric nanocomposites with ultrahigh thermal conductivities, such as with exfoliated graphite or with carbon nanotubes. These materials exhibit thermal conductivity of 3,000 W/mK measured experimentally and up to 6,600 W/mK predicted from theoretical calculations. However, when added to polymers, the expected thermal conductivity enhancement is not realized due to poor interfacial thermal transfer.
This technology is a method of forming carbon-based fillers to be incorporated into highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. The carbon nanosheets can be functionalized and incorporated as fillers in polymer nanocomposites with extremely high thermal conductivities.