Search

Sensors
Quantum Cascade Laser Source and Transceiver
The QCL source addresses the challenges of inefficiency, high power consumption, and bulky designs typically associated with existing solutions. It is fabricated with 80 to 100 alternating layers of semiconductor materials, each layer only a few microns thick. These layers create a cascade effect that amplifies terahertz-energy photon generation while consuming significantly less voltage. To mitigate the natural beam dissipation of QCLs, the source is integrated with a waveguide and thin optical antenna, reducing signal loss by 50%. Additionally, the waveguide employs a flared design with a diagonal feed horn, achieving high modal confinement and increasing beam coupling efficiency to 82%, compared to 37% in conventional setups. This compact design, smaller than a U.S. quarter, fits within payload constraints and enables high-powered terahertz beams for precise spectroscopic measurements. The terahertz transceiver enhances measurement precision by integrating two back-to-back hybrid couplers and Schottky diodes as detectors, providing a 35 dB dynamic range. Operating in the 2.0–3.2 THz frequency range, the transceiver is optimized for versatility across astrophysics, heliophysics, and planetary science applications. It seamlessly couples the QCL-generated signal onto the waveguide, ensuring stable and accurate spectroscopic data collection. This compact and energy-efficient transceiver delivers exceptional sensitivity, enabling it to analyze planetary materials, atmospheric components, and interstellar phenomena with unmatched resolution. With its compact, tunable design and high spectral resolution, the QCL source and transceiver represents a significant advancement for remote sensing and planetary surface characterization, offering a versatile solution for both NASA and commercial applications. The QCL system is at technology readiness level (TRL) 4 (component and/or breadboard validation in lab) and is available for patent licensing.
Electrical and Electronics
Enhanced DC Bus Emulator
Combining a dynamic load emulation technique with a PWM dithering technique, NASA’s technology provides a more efficient, cost-effective, and practical method to emulate complex loads. While there are commercially available electronic device loads on the market that meet basic emulation needs, these devices are limited; they are limited with respect to small input voltage changes, and to feedback signals from the device’s power system, which may lack the strength and resolution needed to emulate accurately. A common solution for the bus emulation limitation is to construct a model of an actual microgrid using representative loads and connections. But this can be complex, costly, and have limitations in performance. NASA’s approach addresses these challenges without creating an actual model microgrid to replicate the systems. As opposed to stand-alone COTS electronic load devices or model microgrids using representative loads and connections for a given test, NASA’s technology is a system constructed of an input power filter, a COTS electronic load device or load subsystem, and a power control circuit. The input power filter is designed to emulate load or bus performance at the medium to high frequency range. The power control circuit combined with the electronic load or load subsystem emulates lower frequency and constant power dynamics of the system. Lastly, the power control circuit linearizes digitization and quantization issues present with digitally controlled COTS electronic loads. The power control circuit can be set to measure a load voltage, which is divided by a determined value for power, and combined with a triangle wave dither (the power control circuit block image demonstrates how to integrate a triangle wave dither). This dither dynamically adjusts the electrical current or power to keep it constant within the commercially purchased load device, enabling accurate emulation of complex DC microgrid systems.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo