A two-way microwave power divider using microstrip transmission lines

instrumentation
A two-way microwave power divider using microstrip transmission lines (GSC-TOPS-222)
Low reflected power and high isolation between output ports.
Overview
Prevalent designs of microwave power dividers utilize quarter-wave transmission lines to match output and input branches. To provide isolation between the output ports, a discreet resistor is placed across them. This type of construction requires the transmission lines to be a quarter of the wavelength length, limiting function over a narrow bandwidth. NASA Goddard Space Flight center has invented a power divider with matched impedances via Klopfenstein tapered transmission lines to provide ultra-bandwidth functionality with low losses and small physical footprint.

The Technology
The power divider use Klopfenstein tapered transmission lines on each output branch of the junction impedance that is matched the input port. Thus, the output lines are well matched to the input, and a reflected power of 1% can be easily achieved. Resistors are distributed along the transmission lines to provide isolation between the two output ports which prevents power of one output port from coupling to the other output port. A large amount of the power is dissipated in the resistors rather than exiting through any other ports in the system. Due to the symmetry of the design, very little power is dissipated during normal operation. The resulting power divider is operable at high bandwidths as the tapered impedance match which have no upper frequency limitation. Additionally, the tapered lines eliminate many discontinuities in the layout which in turn reduce microwave junction effects. The power divider is capable of being manufactured using known methods and may be utilized in a compact microwave spectrometer.
Onboard the R/V Atlantis a tangle of power and data cables awaits a busy team of scientists who will organize them
Benefits
  • Ultra High Bandwidth
  • Low losses
  • Small footprint

Applications
  • Spectroscopy
  • Microwave Applications
Technology Details

instrumentation
GSC-TOPS-222
GSC-17775-1
10243250
Similar Results
Tech Planet Earth Satellite
Microwave Power Combiner
MMICs are a type of integrated circuit that operates at microwave frequencies to amplify electronic signals. The system has at least two power amplifiers; input ports to receive power from the amplifiers; at least one power combiner, which receives power from each input port and combines them to produce maximized power; an output port that sends this maximized power to its destination; and an isolated port, either grounded or match-terminated, that receives no or negligible power from the combiner. The output port can be connected to a load, and can employ more than one combiner, so that the power from another combiner and an input port can be combined, for example, in a 3-way unequal power combiner. Glenn's Ka-band demonstration power combiner has an output return loss better than 20 dB, and a high degree of isolation between the output port and the isolated port, as well as between the two input ports. When the ratio of output power for two MMICs is two-to-one, the combined efficiency is better than 90%. However, the design is not limited to a two-to-one ratio; it can be customized to any arbitrary power output ratio. This means that a low-power gallium arsenide MMIC can be combined with a high-power gallium nitride MMIC, giving designers much more flexibility. The output impedance of the MMIC power amplifier is matched directly to the waveguide impedance, without first transitioning into a transmission line. This technique eliminates the losses associated with a transition and enhances the overall efficiency. Furthermore, the MMIC power combiner is dual purpose- run in reverse it serves as a power divider. To reduce the cost and weight the combiner can be manufactured using 3-D printing and metal-plated plastic. By combining MMIC amplifiers more efficiently, Glenn's technology greatly enhances communications from near-Earth and deep space-to-Earth.
Satellite Starry Sky
Multimode Directional Coupler
Glenn's researchers originally created the MDC to improve the beacon sources for atmospheric propagation studies. These studies are typically conducted to test atmospheric conditions to determine the signal strength needed for satellite communications. A low-power transmitter (e.g., a beacon source) is attached to the satellite, and transmits a continuous waveform (CW) signal to a receiving station on Earth. However, when a separate frequency is desired, building a new beacon source for the transmitter on the satellite - especially one that will operate at higher frequencies - presents numerous challenges. For one, a single-frequency beacon source requires a temperature-stabilized oscillator for frequency generation separate from that provided by the spacecraft receiver. To solve such problems, Glenn's innovators fabricated the MDC from two sections of waveguide: a primary waveguide for the fundamental frequency (Ku-band), and a secondary waveguide for the harmonics (Ka-band). These sections are joined together so that precision-machined slots in the second waveguide selectively couple the harmonics, for amplification and transmission. The harmonics can then be used as an additional beacon source with very small power losses to the fundamental signal. Once the separation takes place, the second or higher harmonic can be amplified and transmitted to a station on Earth. The efficiency and performance of the MDC can be optimized through appropriate computer modeling software and currently available high-precision fabrication techniques. Without the complexity and expense involved in building separate traveling wave tube amplifiers to generate additional frequencies, Glenn's MDC enables satellites to produce multiple signals that can be received by multiple stations - a significant leap forward in satellite productivity.
Radar Jets
Solid-State Microwave Power Module
Typically, microwave power modules (MPMs) are useful only for radar and navigation purposes because they lack the linearity and efficiency required for communications. In standard configurations, conventional MPMs require both a solid-state amplifier at the front end and a microwave vacuum electronics amplifier at the back end. By contrast, Glenn's design features a wideband multi-stage distributed amplifier system. The low-power stage is a high-efficiency gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT)-based monolithic microwave integrated circuit (MMIC) distributed amplifier. The medium-power stage is configured to pick up and amplify the low-power signal. This stage can be either another high-efficiency GaAs pHEMT or a gallium nitride (GaN) HEMT-based MMIC distributed amplifier, depending on the need. The high-power stage, configured to pick up the signal from the second amplifier, is a high-efficiency GaN HEMT-based MMIC distributed amplifier, which supplants the traveling-wave tube amplifier found in most microwave power modules. In Glenn's novel MPM, the radar functions as a scatterometer, radiometer, and synthetic aperture imager. The high-speed communications system down-links science data acquired by Earth-observing instruments. The navigation system functions like a transponder for autonomous rendezvous and docking, and estimates the range information. Glenn's MPM gives systems the versatility to use a single power module to drive not only radar and navigation but also communications systems.
Eruopa
Atomic Number (Z)-Grade Radiation Shields from Fiber Metal Laminates
This technology is a flexible, lighter weight radiation shield made from hybrid carbon/metal fabric and based on the Z-grading method of layering metal materials of differing atomic numbers to provide radiation protection for protons, electrons, and x-rays. To create this material, a high density metal is plasma spray-coated to carbon fiber. Another metal with less density is then plasma spray-coated, followed by another, and so on, until the material with the appropriate shielding properties is formed. Resins can be added to the material to provide structural adhesion, reducing the need for mechanical bonding. This material is amenable to molding and could be used to build custom radiation shielding to protect cabling and electronics in situations where traditional metal shielding is difficult to place.
Automated Fabric Circuit and Antenna Fabrication
Modern production of e-textiles utilizes an embroidery technique called e-broidery that directly stitches circuit patterns with conductive thread onto textiles. This automated manufacturing process combines steps of e-broidery and milling to expand the application of e-textiles to high-current and high-speed uses. Manufacturing begins with two layouts of the desired conductive pattern. After assembling the layers of conductive and nonconductive materials, e-broidery is performed with the second layout and nonconductive thread to secure the layers together and designate the pattern for the conductive material. The secured assembly is transferred to an automated milling or laser cutting machine, which cuts the desired conductive pattern and releases the unneeded portions of the conductive material. The resulting e-textiles are tightly woven together, providing higher surface conductivity and impedance control. Initial comparison tests assessing the performance of fabric-based spiral antennas developed with this method, compared to conventional antennas, indicated no loss in performance across multiple metrics, including voltage standing wave ratio (VSWR), radiation pattern, and axial ratio performance. The Method and Apparatus for Fabric Circuits and Antennas is a technology readiness level (TRL) 6 (system/subsystem prototype demonstration in a relevant environment). The innovation is now available for your company to license. Please note that NASA does not manufacture products itself for commercial sale.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo