Self-Cleaning Seals

Electrical and Electronics
Self-Cleaning Seals (KSC-TOPS-101)
Electrodynamic dust shield technology maximizes performance of seals in harsh, dusty environments
Overview
In space applications, seals for hatches, suit ports, airlocks, and docking systems for pressurized volumes such as habitats, rovers, and space suits must be kept clean. This is necessary to achieve the extremely low leak rates required to ensure that crews will have sufficient breathable air for extended missions on planetary surfaces. Dusty environments, such as those of the Moon and Mars, pose challenges because seals (elastomeric and otherwise) – as dust accumulates on them – will no longer perform as designed, substantially increasing leak rates. Similarly, terrestrial applications involving environments with high dust concentration and pressurized systems (e.g., mining, material handling) must maintain clean seals to ensure safety and uptime. Motivated by the hazard lunar regolith poses to seals – and thus to achieving a sustained lunar presence – researchers in the Electrostatics and Surface Physics Laboratory at NASA’s Kennedy Space Center (KSC) have developed seals that actively self-clean in a continuous or periodic manner.

The Technology
This NASA innovation applies the concepts of electrodynamic dust shielding (EDS) to develop seals (e.g., O-rings) with active self-cleaning capabilities. NASA’s self-cleaning seals are manufactured in the following manner: A seal with a conductive surface (or otherwise fabricated to be conductive) is generated and an electrical connection, lead or electrode is attached. Next, a dielectric material is coated or placed over the conductive surface of the seal. (NOTE: Using conductive elastomer materials eliminates the need for a conductive cover layer) A high voltage (nominally >1kV) power supply is connected to the conductive layer on the seal and grounded to the metallic groove or gland that houses the seal. Given the design, dust accumulates on the outer dielectric layer (a high-voltage insulator) of the seal. To clean the seal, a time varying alternating voltage is applied from the power supply, through the high voltage lead and onto the conductive layer of the seal. When this voltage is applied, the resulting electric field produces Coulomb and dielectrophoretic forces that cause the dust to be repelled from the sealing surface. In practice, NASA’s self-cleaning seals could be operated in continuous cleaning mode (actively repelling dust at all times, preventing it from ever contacting the seal surface) or in a periodic cleaning cycle mode (removing dust from the seal surface at regular intervals). NASA’s self-cleaning seals have been prototyped and demonstrated to be highly effective at dust removal. The invention could serve as the basis of an active, self-cleaning seal product line marketed for in-space and/or terrestrial applications. Additionally, companies developing space assets destined for operation on dusty planetary surfaces (e.g., the Moon) may be interested in leveraging the technology to protect seals from dust/regolith accumulation, ensuring continuous low leakage operations.
A cross sectional diagram of NASA’s electrodynamic self-cleaning seal system.
Benefits
  • Provides active, self-cleaning capabilities: NASA’s self-cleaning seals electrically lift and remove dust from their surface without requiring human intervention.
  • Prevents seal performance degradation in harsh environments: Preventing accumulation of dust and other particulates (e.g., lunar regolith) on seals helps prevent wear and tear and maintain sealing efficiency.

Applications
  • Space applications: Self-cleaning seals for hatches, suit ports, airlocks, and docking systems for pressurized volumes (e.g., habitats, rovers, space suits) in dusty environments such as the lunar surface
  • Mining: Preventing seal degradation from dust and particulate accumulation generated by drilling, blasting, and transporting materials
  • Food and beverage processing: Protecting processing / packaging equipment seals from contamination by dust from dry ingredients
  • Material handling: Preventing dust accumulation on machinery (e.g., conveyer systems, robotic systems, etc.) seals
  • Pharmaceutical manufacturing: Protecting mixing, milling, and packaging equipment seals from accumulation of fine dust from powdered chemicals, raw materials, etc.
  • Other: The invention may prove useful for a variety of other applications in environments with high dust concentrations that expose sealing surfaces to potential particle contamination
Technology Details

Electrical and Electronics
KSC-TOPS-101
KSC-14456
Similar Results
sail boat
Particle Contamination Mitigation Methods
The following methods can be used individually or in combination to generate superhydrophobic surfaces: Synthesis of novel copolyimide oxetanes with unique surface properties The technology is the synthesis of a polyimide coating or film with a modified surface chemistry shown in Figure 1. A minor amount of an oxetane reactant containing fluorine is added to the polyimide, and the oxetane preferentially migrates to the surface, enabling relatively high concentrations of fluorine at the surface, without compromising the functional performance of the bulk of the polymide coating/film. The copolymers exhibit mitigation of particle adhesion and fouling from exposure to various particulate and biological contaminants and exhibit reduced surface energy and increased surface fluorine content at extremely low oxetane loadings relative to the imide matrix (see Figure 2). Additionally, the short fluorinated carbon chains do not bioaccumulate, reducing the environmental impact of these materials. Modifying surface energy via laser ablative surface patterning This method uses a laser to create nanoscale patterns in the surface of a material to increase the hydrophobicity of the surface (see Figure 2). The benefits of hydrophobic surfaces include decreases in friction and increases in self-cleaning properties. This is an advantageous method of surface modification because it is fast and single-step, promises to be scalable, requires no chemicals, could be applied to a variety of materials, and does not require a planar surface for patterning.
View through a P-3 window of a small grounded portion of the terminus of Upernavik Central, northwest Greenland, as seen during an Operation IceBridge flight
Alternative Transparent Coating Lotus Suitable for Optics with Vacuum Deposition Layer
In addition to previous LOTUS coating formulations, an additional optical formulation may be applied via vacuum deposition. This coating forms a top layer and may be applied in different thicknesses that serve to enhance its hydrophobic properties. The vacuum deposited material may comprise fluorinated ethylene propylene or a similar material. This coating is transparent and can be used on optical components or any other applications requiring a clear coating.
Self-Cleaning Coatings for Space or Earth
The new transparent EDS technology is lighter, easier to manufacture, and operates at a lower voltage than current transparent EDS technologies. The coating combines an optimized electrode pattern with a vapor deposited protective coating of SiO2 on top of the electrodes, which replaces either polymer layers or manually adhered cover glass (see figure on the right). The new technology has been shown to achieve similar performances (i.e., over 90% dust clearing efficiency) to previous technologies while being operated at half the voltage. The key improvement of the new EDS coating comes from an innovative method to successfully deposit a protective layer of SiO2 that is much thinner than typical cover glass. Using vapor deposition enables the new EDS to scale more successfully than other technologies that may require more manual manufacturing methods. The EDS here has been proven to reduce dust buildup well under vacuum and may be adapted for terrestrial uses where cleaning is done manually. The coatings could provide a significant improvement for dust removal of solar cells in regions (e.g., deserts) where dust buildup is inevitable, but water access is limited. The EDS may also be applicable for any transparent surface that must remain transparent in a harsh or dirty environment. The related patent is now available to license. Please note that NASA does not manufacturer products itself for commercial sale.
Submarine Hatch Door
Seal with Integrated Shroud to Protect from Exposure to Extreme Environments
Approximately 50 inches in diameter, Glenn's unique sealing system consists of multiple elements installed in a recessed rectangular sealing groove. The main sealing function is provided by an elastomer element (e.g., silicone) comprising one or more sealing wall(s) connected by a web. The wall(s) extend above the top of the sealing groove so they are compressed by the opposing mating surface during the sealing process. The retractable shroud element is installed between the wall(s), with its base resting atop the web of the sealing element. The shroud is typically composed of an elastomer material to allow for flexibility (which is essential to retraction), but it can also be made from thin metal or plastic materials. When the seal is no longer in use, a pair of V-shaped shroud "arms" extend upward from the base of the seal to cover the wall(s). A thin metal retainer is installed on top of the shroud, and fasteners pass through holes in the retainer, shroud, and sealing elements to secure the system to the base of the sealing groove. Metal washers are installed in these holes to provide a load path between the metal retainer and the surface of the sealing groove. The system can seal against either a flat metal surface or another seal of the same design. This sealing system has been designed to accommodate multiple sealing cycles and has exhibited extremely low leak rates, making it an attractive solution within a variety of industries from aerospace to agriculture.
front
Air Revitalization for Vacuum Environments
The NASA life support system uses a regenerable vacuum swing adsorption process, known as Sorbent-Based Air Revitalization (SBAR), to separate water and carbon dioxide for disposal. The SBAR system is an adsorbent-based swing bed system that has been optimized to provide both humidity and carbon dioxide control for a spacecraft cabin atmosphere. The system comprises composite silica gel and zeolite-packed beds for adsorption and a bypass system for flow control. Under normal operating conditions, the disposal system would require a high-quality vacuum environment to operate. Improvements to the SBAR system include an enhanced inherent capacitance that extends the operation time within a non-vacuum environment for up to 4.5 hours. Flight time can be further expanded with multiple SBAR systems to allow for system regeneration. By scheduling periodic thermal regenerations&#151nominally during sleep periods&#151the SBAR technology may be suitable for missions of unlimited duration.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo