TerraROVER

Environment
TerraROVER (GSC-TOPS-387)
A novel remotely operated instrumented system for spatially distributed surface and low-level observations.
Overview
Innovators at NASA’s Wallops Flight Center have developed the TerraROVER as part of the AEROKATS and Rover Education Network. The TerraROVER is a 3D-printable, remotely controlled wheeled platform designed for educational and research applications. It features electric propulsion for operation on various terrains, including pavement, grass, soil, and even ice or snow with appropriate traction. The platform is built to accommodate a range of sensor systems, such as surface and air temperature sensors, GPS modules, cameras, and data recording or transmission devices. Its modular design allows for easy assembly using 3D-printed parts and commercially available motors, gearboxes, batteries, and radio control components. With the ability to operate via remote control or optional pre-programmed/autonomous modes, the TerraROVER serves as an accessible and versatile tool for training, experimentation, and hands-on learning in STEM education.

The Technology
The TerraROVER’s core functionality is centered around its electric propulsion system, enabling it to traverse various outdoor environments. Its drive system consists of electric motors and gearboxes that provide controlled speed and maneuverability. The remote-control interface allows users to adjust speed and direction, making it an effective platform for training and testing mobility systems. For advanced applications, the TerraROVER can be adapted for pre-programmed or autonomous navigation, expanding its use in robotics and automation research. A key design feature of the TerraROVER is its adaptability for sensor integration. It includes mounting provisions for miniaturized sensors capable of capturing environmental data such as temperature, GPS location, and visual imagery. The platform supports both onboard data logging and real-time transmission, making it suitable for field studies, distributed sensing applications, and educational experiments. Fabrication is streamlined through the use of 3D-printed components, allowing for cost-effective production and easy assembly in classroom or research settings. Currently at Technology Readiness Level (TRL) 7, the system has been successfully demonstrated in an operational environment and is available for patent licensing.
Credit: NASA 3D-printed components of the TerraROVER. Credit: NASA
Benefits
  • Accessible: Manufacturable using low-cost, hobby-grade 3D printers.
  • Modular and Customizable: Supports various sensors and control systems for tailored applications.
  • Multi-Terrain Capability: Operates on diverse surfaces, from pavement to natural terrain.
  • Remote & Autonomous Operation: Enables both manual control and programmable functionality for expanded research applications.
  • Hands-On STEM Learning: Provides an interactive tool for education in robotics, engineering, and environmental science.

Applications
  • Primary Education: Hands-on introduction to engineering, mechanics, and electronics through assembly and operation.
  • Secondary Education: Project-based learning tool for physics, robotics, and basic programming concepts.
  • University Education: Application in 3D printing, CAD design, sensor integration, and senior design projects.
  • STEM Toys: Customizable, educational toy promoting creativity and early STEM engagement.
  • Hobbyist & Maker Projects: Customize with 3D-printed parts, sensors, and coding to create unique autonomous or remote-controlled robotics experiments.
  • Environmental Data Collection: Deploy sensors to monitor surface and air temperatures, GPS locations, and other field data in real-world conditions.
Technology Details

Environment
GSC-TOPS-387
GSC-18934-1
Similar Results
https://science.nasa.gov/mission/viper/
3D Lidar for Improved Rover Traversal and Imagery
The SQRLi system is made up of three major components including the laser assembly, the mirror assembly, and the electronics and data processing equipment (electronics assembly) as shown in the figure below. The three main systems work together to send and receive the lidar signal then translate it into a 3D image for navigation and imaging purposes. The rover sensing instrument makes use of a unique fiber optic laser assembly with high, adjustable output that increases the dynamic range (i.e., contrast) of the lidar system. The commercially available mirror setup used in the SQRLi is small, reliable, and has a wide aperture that improves the field-of-view of the lidar while maintaining a small instrument footprint. Lastly, the data processing is done by an in-house designed processor capable of translating the light signal into a high-resolution (sub-millimeter) 3D map. These components of the SQRLi enable successful hazard detection and navigation in visibility-impaired environments. The SQRLi is applicable to planetary and lunar exploration by unmanned or crewed vehicles and may be adapted for in-space servicing, assembly, and manufacturing purposes. Beyond NASA missions, the new 3D lidar may be used for vehicular navigation in the automotive, defense, or commercial space sectors. The SQRLi is available for patent licensing.
The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia.
eVTOL UAS with Lunar Lander Trajectory
This NASA-developed eVTOL UAS is a purpose-built, electric, reusable aircraft with rotor/propeller thrust only, designed to fly trajectories with high similarity to those flown by lunar landers. The vehicle has the unique capability to transition into wing borne flight to simulate the cross-range, horizontal approaches of lunar landers. During transition to wing borne flight, the initial transition favors a traditional airplane configuration with the propellers in the front and smaller surfaces in the rear, allowing the vehicle to reach high speeds. However, after achieving wing borne flight, the vehicle can transition to wing borne flight in the opposite (canard) direction. During this mode of operation, the vehicle is controllable, and the propellers can be powered or unpowered. This NASA invention also has the capability to decelerate rapidly during the descent phase (also to simulate lunar lander trajectories). Such rapid deceleration will be required to reduce vehicle velocity in order to turn propellers back on without stalling the blades or catching the propeller vortex. The UAS also has the option of using variable pitch blades which can contribute to the overall controllability of the aircraft and reduce the likelihood of stalling the blades during the deceleration phase. In addition to testing EDL sensors and precision landing payloads, NASA’s innovative eVTOL UAS could be used in applications where fast, precise, and stealthy delivery of payloads to specific ground locations is required, including military applications. This concept of operations could entail deploying the UAS from a larger aircraft.
RASSOR 2.0
Regolith Advanced Surface Systems Operations Robot (RASSOR) Excavator
Regolith excavation is desired in future space missions for the purpose of In Situ Resource Utilization (ISRU) to make local commodities, such as propellants and breathing air, and to pursue construction operations. The excavation of regolith on another planetary body surface, such as the Moon, Mars, an asteroid, or a comet is extremely difficult because of the high bulk density of regolith at lower depths. Additionally, because of the low gravity in these space surface environments, the mass of the excavator vehicle does not provide enough reaction force to enable the excavation blade to penetrate the regolith if traditional terrestrial methods are used. RASSOR uses counterrotating bucket drums on opposing arms to provide near-zero horizontal and minimal vertical net reaction force so that excavation is not reliant on the traction or weight of the mobility system to provide a reaction force to counteract the excavation force in low-gravity environments. The excavator can traverse steep slopes and rough terrain, and its symmetrical design enables it to operate in reverse so that it can recover from overturning by continuing to dig in the new orientation. The system is capable of standing up in a vertical position to dump into a receiving hopper without using a ramp. This eliminates the need for an onboard dump bin, thus reducing complexity and weight. During loading, the bucket drums excavate soil/regolith by scoops mounted on the drums exteriors that sequentially take multiple cuts of soil/regolith while rotating at approximately 20 revolutions per minute. During hauling, the bucket drums are raised by rotating the arms to provide clearance above the surface being excavated. The mobility platform can then travel while the soil/regolith remains in the raised bucket drums. When the excavator reaches the dump location, the bucket drums are commanded to reverse their direction of rotation, which causes soil/regolith to be expelled out of each successive scoop. RASSOR has wireless control, telemetry, and onboard transmitting cameras, allowing for teleoperation with situational awareness. The unit can be programmed to operate autonomously for selected tasks.
https://ntrs.nasa.gov/api/citations/20230000798/downloads/UTA%20Feb%202023%20Troupaki%20STRIVES.pdf
3D Lidar for Autonomous Landing Site Selection
Aerial planetary exploration spacecraft require lightweight, compact, and low power sensing systems to enable successful landing operations. The Ocellus 3D lidar meets those criteria as well as being able to withstand harsh planetary environments. Further, the new tool is based on space-qualified components and lidar technology previously developed at NASA Goddard (i.e., the Kodiak 3D lidar) as shown in the figure below. The Ocellus 3D lidar quickly scans a near infrared laser across a planetary surface, receives that signal, and translates it into a 3D point cloud. Using a laser source, fast scanning MEMS (micro-electromechanical system)-based mirrors, and NASA-developed processing electronics, the 3D point clouds are created and converted into elevations and images onboard the craft. At ~2 km altitudes, Ocellus acts as an altimeter and at altitudes below 200 m the tool produces images and terrain maps. The produced high resolution (centimeter-scale) elevations are used by the spacecraft to assess safe landing sites. The Ocellus 3D lidar is applicable to planetary and lunar exploration by unmanned or crewed aerial vehicles and may be adapted for assisting in-space servicing, assembly, and manufacturing operations. Beyond exploratory space missions, the new compact 3D lidar may be used for aerial navigation in the defense or commercial space sectors. The Ocellus 3D lidar is available for patent licensing.
Lunar Surface Manipulation System
Lunar Surface Manipulation System
NASA Langley developed the LSMS because of the need for a versatile system capable of performing multiple functions on the lunar surface, such as unloading components from a lander, transporting components to an operational site and installing them, and supporting service and replacement during component life. Current devices used for in-space operations are designed to work on orbit (zero g) only and thus do not have sufficient strength to operate on planetary surfaces. Traditional cranes are specialized to the task of lifting and are not capable of manipulator-type positioning operations. The innovations incorporated into the LSMS allow it to lower payloads to the ground over a significant portion of the workspace without use of a hoist, functioning like a robot manipulator, thus providing a rigid connection and very precise control of the payload. The LSMS uses a truss architecture with pure compression and tension members to achieve a lightweight design. The innovation of using multiple spreaders (like spokes in a wheel) allows the LSMS to maintain its high structural efficiency throughout its full range of motion. Rod portions of the tension members automatically lift off and re-engage the spreaders as the joint articulates, allowing a large range of motion while maintaining mechanical advantage. In addition, the LSMS uses a quick-change device at the tip end that enables automated acquisition of end effectors or special purpose tools to increase its versatility.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo